Lorem ipsum dolor sit amet, consectetur adipiscing elit. Diam ut id nisl tellus rhoncus, imperdiet consequat ornare. Nunc, cursus eget dui, ultricies lacus.
Lorem ipsum dolor sit amet, consectet adipiscing elit. Arcu elementum tellus purus, consectetur ultricies arcu leo.
Lorem ipsum dolor sit amet, consectet adipiscing elit. Arcu elementum tellus purus, consectetur ultricies arcu leo.
Lorem ipsum dolor sit amet, consectet adipiscing elit. Arcu elementum tellus purus, consectetur ultricies arcu leo.
Lorem ipsum dolor sit amet, consectet adipiscing elit. Arcu elementum tellus purus, consectetur ultricies arcu leo.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Diam ut id nisl tellus rhoncus, imperdiet cons.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Massa adipiscing in at orci semper. Urna, urna.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Tortor tristique quam erat consectetur vivamus sed id.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Diam ut id nisl tellus rhoncus, imperdiet cons.
“Lorem ipsum dolor sit amet, consectetur adipiscing elit. Viverra pellentesque egestas aliquet amet. Fermentum, augue consequat velit et, in tempor. Donec nulla felis, venenatis velit.“
“Lorem ipsum dolor sit amet, consectetur adipiscing elit. Viverra pellentesque egestas aliquet amet. Fermentum, augue consequat velit et, in tempor. Donec nulla felis, venenatis velit.“
“Lorem ipsum dolor sit amet, consectetur adipiscing elit. Viverra pellentesque egestas aliquet amet. Fermentum, augue consequat velit et, in tempor. Donec nulla felis, venenatis velit.“
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Diam ut id nisl tellus rhoncus, imperdiet cons.
LeapDB includes "star schema optimization" which is a technique for improving query performance on star schema queries that filter out rows based on filters in dimension tables. This reduces IO for star schema queries and provides opportunities for query parallelization.
I use my benchmark queries on the BTS Ontime data set in a materialized view context and compare performance of the queries when using the materialized view against querying the base table.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Massa adipiscing in at orci semper. Urna, urna.